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ABSTRACT 

Warfighters are often subjected to challenging sleep/wake schedules that hinder their cognitive performance. 

Countermeasures, such as timely short naps and caffeine, are often used to mitigate the effects of sleep loss on 

performance. However, the timing, duration, and dosage of these countermeasures should be optimal (or near 

optimal) to maintain high levels of performance at the desired times. To this end, mathematical models that can 

accurately predict the detrimental effects of sleep loss and the restorative effects of different dosages of caffeine 

on performance could be of great utility. Here, we present a mathematical model that predicts individualized 

cognitive performance for subjects exposed to the continuum of sleep loss (from no sleep to partial sleep) while 

considering the recuperative effects of caffeine. In particular, we developed and validated both group-average 

and individual-specific models on performance data obtained from four different studies. Results from the first 

two studies showed that a group-average model developed on one study could accurately predict the temporal 

dynamics of both total and partial sleep loss in another study, with >75% of the predictions falling within 2 

standard errors of the measured data. The results also showed that, on average, individual-specific models 

provided ~30% improved prediction accuracy compared with the group-average models. Importantly, we 

showed that once the model had been customized to an individual under total sleep loss, it could be directly 

applied to predict the same individual's performance under partial sleep loss, and vice versa. Results from the 

third and fourth studies showed that the group-average model that accounts for caffeine effects on performance 

can provide up to 90% improved accuracy in capturing the effects of a range of caffeine doses (50-300 mg) over 

a model that does not account for caffeine. Here, individual-specific models provided up to 43% improved 

accuracy in predicting caffeine effects on performance compared with caffeine-free models. Taken together, the 

proposed model is the first mathematical formulation that allows for the prediction of the effects of any form of 

sleep loss and the restorative effects of different dosages of caffeine on a specific individual's performance. 

When used as a decision-aid tool, this model provides the means to maximize Warfighter cognitive performance, 

resulting in peak alertness and prolonged alertness at the desired times.         

1.0 INTRODUCTION 

During combat operations, military personnel are often subjected to challenging sleep/wake schedules, ranging 

from a few days of no sleep to many days of fewer than 6 h of sleep per night. This naturally hinders their 
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cognitive performance, leading to an increased risk of errors and accidents [1]. Caffeine doses and timely short 

naps can help mitigate the effects of sleep loss on performance. However, the timing, duration, and dosage of 

these countermeasures need to be optimal (or near optimal) to maintain high levels of performance at the desired 

times. Hence, mathematical models that can accurately predict the effects of sleep loss and the restorative effects 

of different durations of naps and dosages of caffeine on performance would be highly desirable. Such models 

could be used as a mission-planning tool to help commanders quantitatively assess the state of Warfighters in 

real time and to determine the optimal countermeasure schedule for each Warfighter to sustain performance for 

the entire duration of the mission.  

Recognizing this need, the U.S. Department of Defense organized a Fatigue and Performance Modeling 

Workshop, held on June 13-14, 2002, in Seattle, WA, with the objectives of determining the state of the art in 

biomathematical models of performance and, more importantly, identifying research gaps [2]. The key findings 

from this Workshop were as follows:  

• All models were based on Borbély’s seminal two-process model of sleep regulation [3], which provides 

an elegant phenomenological representation of the temporal dynamics of sleep propensity as a function 

of sleep and wake schedules. While these models performed well when applied to humans exposed to 

total sleep deprivation (TSD) conditions, they were less accurate in predicting the effects of partial sleep 

loss [or chronic sleep restriction (CSR)] because they did not account for the effects of prior sleep debt 

[4]. 

• All models were “group-average” models, representing the average performance of a group of 

individuals. In other words, they did not account for the substantial inter-individual variability that exists 

with regard to response to sleep loss. 

• None of the models accounted for the recuperative effects of caffeine on performance.     

Here, we address the above-mentioned research gaps by developing a mathematical model that can 1) predict the 

effects of both TSD and CSR conditions, 2) be customized to an individual to provide individual-specific 

predictions of performance during sleep loss, and 3) predict the effects of caffeine on performance. In the 

sections below, we present the methods and results as well as a brief discussion on each of these capabilities.    

2.0 UNIFIED MODEL OF PERFORMANCE FOR BOTH TOTAL AND PARTIAL 

SLEEP LOSS 

Here, we developed and validated a unified model of performance (UMP) that can account for effects of both 

total and partial sleep loss in a single (i.e., unified) mathematical modeling framework. Specifically, we used 

performance data from one study, comprising of four different CSR conditions, to develop the model and 

validated its predictions on performance data from another study, involving a TSD and a CSR condition. 

2.1 Methods: Unified Model of Performance 

2.1.1 Two-process Model 

The two-process model postulates that the temporal pattern of performance can be represented as the additive 

interaction of two processes [5]. The first, process S, represents the homeostatic influence on performance 

wherein the homeostat increases during wakefulness and decreases during sleep such that these 

increases/decreases operate within fixed upper and lower asymptotes that are independent of prior sleep debt. 

The second process is the endogenous circadian rhythm, process C, which is independent of the sleep/wake 
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history and represents a self-sustaining oscillator with a 24-h period [5]. Mathematically, performance P(t) at 

time instant t can be expressed as follows: 
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where  represents the circadian amplitude, U and L denote the upper and lower asymptotes of process S, 

respectively, w and s denote the time constants of the increasing and decreasing sleep pressure during 

wakefulness and sleep, respectively, ai, i = 1, …, 5, represent the amplitude of the five harmonics (a1 = 0.97, a2 = 

0.22, a3 = 0.07, a4 = 0.03, and a5 = 0.001) governing process C, and  denotes the circadian phase. 

2.1.2 The Unified Model 

The UMP was developed as an extension of the two-process model [6]. In the UMP, process S is dependent on 

prior sleep debt such that the capacity to recover during sleep varies inversely with extant sleep debt. 

Specifically, the UMP modulates the lower asymptote L of process S as a function of the sleep debt resulting 

from prior sleep/wake history such that the most recent sleep loss exerts the greatest effect, with the sleep loss 

influence decreasing with increasing temporal distance. Mathematically, we represented the lower asymptote 

L(t) and sleep debt Debt(t) as follows:  
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where LA denotes the time constant of the exponential decay of the effect of sleep history on performance, and 

Loss(t) assumes a value of 1 during wakefulness and –2 during sleep [6]. Further, to better account for the effects 

of extended sleep under well-rested conditions, we imposed a minimum level of −0.11 on Debt (t). 

The UMP thus consists of eight parameters: 1) U, the upper asymptote of homeostatic process S; 2) w, the time 

constant of increasing homeostatic pressure during wake time; 3) s, the time constant of decreasing homeostatic 

pressure during sleep; 4) S0, the initial state value for process S; 5) , the amplitude of circadian process C; 6) , 

the circadian phase; 7) LA, the time constant accounting for the exponential rise and fall of sleep debt (via 

modulation of the lower asymptote L) as a function of sleep/wake history; and 8) L0, the initial state value of L. 

The first six parameters originate from the original two-process model, whereas the last two parameters account 

for the effects of sleep debt. 

2.1.3 Study Data 

We obtained psychomotor vigilance task (PVT) data from two previously published sleep studies to develop and 

validate the UMP. The PVT is a visual vigilance task in which subjects press a button in response to a visual 

stimulus that is presented as a random interval (2-10 s) schedule over a 10-min period, resulting in ~100 

stimulus-response pairs [7, 8]. In a PVT session, a time (initially set to “000”) is displayed in the center of a 

computer screen, and subjects are instructed to press a response key as soon as the time display begins to scroll. 

during wakefulness 

during sleep, 
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The subject’s response stops the timer, displays the reaction time for ~0.5 s, and then initiates the next trial. The 

subject’s response times (RTs) are automatically recorded, which are then used to compute two commonly used 

statistics: 1) lapses (number of RTs >500 ms) and 2) mean RT (average of all RTs >100 ms and <3000 ms). 

The first study (labeled Study A) involved 57 healthy adults (age: 24-62 yr, mean: 38 yr) who underwent 7 

consecutive nights of 3, 5, 7, or 9 h of time in bed (TIB) during the CSR phase followed by 3 consecutive nights 

of 8-h TIB for recovery in a controlled laboratory study [9]. A 10-min PVT was administered 4 times/day 

(09:00, 12:00, 15:00, and 21:00 hours). Subjects in the 3- and 5-h TIB study conditions performed additional 

PVT sessions (at 00:00 hours for both study conditions and again at 02:00 hours for the 3-h TIB study condition) 

during their additional time awake.  

The second study (labeled Study B) involved 19 healthy adults (age: 18-39 yr, mean: 28 yr) who underwent 2 

sleep-loss conditions (crossover design) separated by 2-4 wk: 1) 64-h TSD and 2) CSR consisting of 7 

consecutive nights of 3-h TIB [10]. Both conditions were preceded by 7 in-laboratory nights with 10-h TIB, and 

followed by 3 nights with 8-h TIB (recovery). During the entire wake period of TSD/CSR and recovery, 10-min 

PVTs were administered every 2 h. 

In both studies, subjects slept for ~8 h each night for at least 3 days prior to the study. 

2.1.4 Fitting and Prediction 

We used group-average performance data from Study A, involving four different CSR conditions, to estimate the 

model parameters by minimizing the sum of squared errors between the group-average data and the model 

outputs. We then used this model to predict the group-average performance data in Study B, involving both TSD 

and CSR conditions. This allowed us to investigate whether the model based on sleep/wake conditions in one 

study could simultaneously capture the effects of TSD, CSR, and variation in sleep/wake history on performance 

in another study. 

2.1.5 Goodness of Fits 

To assess the goodness of fit and predictions, we calculated the root mean squared errors (RMSEs) between 

UMP outputs P(t) and group-average performance data for each study condition. For the predictions, we also 

quantified the likelihood that the predictions came from the same distribution as the group-average data. 

Specifically, we computed the percentage of model predicted points that lie within a 95% confidence interval 

(CI) of the group-average data, wherein we used the standard errors of the data to compute CIs (95% CI ≈ 2 

standard errors) [11]. Thus, higher percent values indicate greater likelihood and, hence, better predictions. 

2.2 Results: Unified Model of Performance 

We used group-average PVT lapse data from Study A to estimate the UMP model parameters. We then used this 

model to predict the group-average lapse data in Study B. 

2.2.1 Model Fits on Study A 

We obtained the following parameter estimates (standard error) by fitting the UMP on Study A lapse data: U = 

18.35 (0.73) lapses, w = 40.00 (3.19) h, s = 2.11 (0.11) h, S0 = 0.50 (0.66) lapses,  = 3.26 (0.26) lapses,  = 

2.31 (0.26) h, LA = 7.00 (1.67) days, and L0 = 0.00 (0.00) lapses. Figure 1 shows the corresponding fits on data 

from each of the four study conditions in Study A. The UMP was able to capture the dose-dependent effect of 
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TIB on performance during CSR, yielding RMSEs ranging from 1.20 lapses (for the 7-h TIB condition) to 3.26 

lapses (for the 3-h TIB condition). It also successfully captured the slower recovery in the 3-h TIB condition 

compared with the recovery times in the other study conditions. 

 

 

 

Figure 1: Group-average psychomotor vigilance task (PVT) lapse data and unified model of 
performance (UMP) fits on 3-, 5-, 7-, and 9-h time in bed (TIB) groups for 7 nights of chronic sleep 

restriction (CSR; C1-C7) followed by three 8-h TIB recovery nights (R1-R3) in Study A [9].  

2.2.2 Model Predictions on Study B 

Using the model fitted on Study A data, we predicted performance on both TSD and CSR conditions in Study B. 

Figure 2 shows group-average lapse data and UMP predictions during the TSD/CSR and recovery phases for 

Study B. Except for the PVT sessions between T1 and T2 (TSD condition) and the first session (i.e., the first data 

point) immediately after sleep between C4 and C7 (CSR condition), the UMP accurately predicted the effects of 

sleep loss during both TSD and CSR (and the recovery phases after them), yielding overall RMSEs of 2.46 and 

2.39 lapses, respectively. Also, for TSD and CSR, 80% and 76% of the model predictions fell within the 95% 

CIs of the measured data, respectively. As observed in the data, the UMP also predicted a faster recovery after 

64-h TSD compared with CSR of 7 nights of 3-h TIB.  

Recovery Chronic Sleep Restriction 
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2.3 Discussion: Unified Model of Performance 

The UMP extends the classical two-process model of sleep regulation by accounting for the effects of a known 

sleep/wake history on performance, and it bridges the continuum from short periods of acute TSD to longer 

periods of sleep restriction (hence, the term “unified”). Importantly, it does not require an artificial distinction 

between sleep deprivation, restricted sleep, and recovery sleep, that is, it simultaneously represents both TSD 

and CSR performance data. And, because it modifies only those aspects of the two-process model that relate to 

recovery of the homeostatic process during sleep, it reduces to Borbély’s original model as TIB approaches zero 

hours (i.e., under conditions of acute TSD).   
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Figure 2: Group-average lapse data and standard errors and UMP predictions during total  
sleep deprivation (TSD; T1-T2), CSR (C1-C7), and recovery (R1-R3) phases in Study B [10].  

Gray-shaded vertical bars represent sleep episodes. 

The results from the present analyses indicate that the UMP is capable of accurately capturing the dose-

dependent effects of TIB during CSR and subsequent recovery on PVT performance. Furthermore, it accurately 

predicted group-average performance under both 64-h TSD and 3-h TIB CSR conditions of another study, with 

>75% of predictions falling within 2 standard errors of the measured data.  

One of the practical utilities of the UMP is to be able to simulate the impact of any given sleep/wake schedule on 

performance without the need to perform additional experimental studies. Accordingly, it could serve as a useful 

tool to design and optimize laboratory sleep-study protocols and serve as a key component of fatigue 

management systems.   

3.0 CAN THE UMP PREDICT AN INDIVIDUAL’S TRAIT-LIKE RESPONSE TO 

SLEEP LOSS? 

Historically, biomathematical performance prediction models have focused on predicting group-average 

performance impairment. However, laboratory studies have repeatedly shown that inter-individual differences 

account for nearly 70% of the total variance in performance among a group of individuals [12]. Importantly, 

studies have also shown that these differences are trait like and stable [10, 12]. That is, an individual’s response 

to one sleep-loss condition is positively correlated to the same individual’s response to a subsequent, different 

sleep-loss condition.  

Recovery 64-h TSD Recovery CSR (7 nights of 3-h TIB) 
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The purpose of the present work was threefold: 1) to develop individual-specific UMP models, 2) to determine 

the extent to which a UMP developed for an individual under one sleep-loss condition could predict the same 

individual’s response under a different sleep-loss condition, and 3) to determine the extent to which individual-

specific models increase prediction accuracy over group-average models.  

We used the PVT mean RT data from Study B (described in 2.1.3 Study Data) for these analyses [10]. We 

excluded four subjects from our analyses: one subject was excluded due to missing data and the others were 

excluded due to significant differences in RT distributions of their baseline sessions (first day of TSD/CSR) 

between the TSD and CSR conditions.   

3.1 Methods: Modeling Individual Differences During Sleep Loss  

3.1.1 Individual-specific Models 

To obtain individual-specific models of performance, we fitted the UMP to each subject’s PVT performance 

data obtained from each of the two sleep-loss conditions (TSD and CSR), resulting in two sets of model 

parameters for each of the 15 subjects. Because the UMP output was insensitive to 3 trait parameters, w, s, and 

LA (i.e., the model output did not change appreciably with changes in these parameters), we fixed them to 

physiologically meaningful values, e.g., w = 10 h, s = 2 h, and LA = 7 days [6, 13]. We thus estimated only five 

individual-specific model parameters (U, , S0, L0, and ) for each subject.  

Using the UMP parameters developed from the TSD data, we computed the individual-specific model fits (Pi) 

under TSD and the corresponding cross-condition predictions (PXi) under CSR, and vice versa. 

3.1.2 Group-average Prediction Models 

For comparison purposes, we also developed two group-average prediction models for every subject, one for 

each sleep-loss condition. To obtain a group-average model for predicting subject i, we excluded performance 

data from the i-th subject when averaging the data used for model fitting. We then used these models to compute 

cross-condition predictions (
XiP ), generating two sets of predictions for each subject i, one set for each 

condition, based on the two group-average models. 

3.1.3 Comparing Model Fits and Predictions 

To compare accuracies of the individual-specific model fits (Pi), group-average model predictions (
XiP ), and 

individual-specific model predictions (PXi), we calculated the RMSE between each subject’s performance data 

and the corresponding model fits or model predictions.  

3.2 Results: Modeling Individual Differences During Sleep Loss  

3.2.1 Individual-specific Model Fits vs. Predictions 

Table 1 lists the five UMP parameters for each subject under each condition (entries within parentheses 

correspond to the TSD condition) obtained by fitting the model to subjects’ mean RT data measured under the 

two conditions. Also listed are the means and standard deviations for each parameter. We observed that for every 

subject, each of the parameters was similar across the two conditions, with the average difference being <15% 

for all parameters except for , which exhibited an average absolute difference of ≤0.5 h. (Because exhibits a 

24-h periodicity, it is improper to compute a percent difference for it.) 
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Using the individual-specific UMP parameters obtained from TSD data, we computed the corresponding fits to 

TSD performance data and predictions of performance under the CSR condition. We performed similar 

computations for the CSR data. Figure 3 shows the model fits (Pi) and cross-condition predictions (PXi) for three 

different subjects (Subjects #3, #5, and #12), who showed different patterns of response to sleep loss. Individual-

specific fits (blue solid lines) accurately captured the within- and across-day performance variations under both 

TSD and CSR. To a slightly lesser extent, the cross-condition predictions (red dashed lines) were also accurate. 

(The RMSEs of the predictions were no greater than 5 ms compared with those of the fits.) The fits and cross-

condition predictions were accurate during the recovery days as well, except for the first recovery day after TSD 

for Subject #3 and for the second recovery day after CSR for Subject #12; in these instances, the subjects 

appeared to recover faster than predicted by the models.  

Table 1: Individual-specific parameters of the unified model of performance for each of  
the 15 subjects based on psychomotor vigilance task (PVT) data (mean response  

time statistic) under chronic sleep restriction and total sleep deprivation  
(entries within parentheses) conditions in Study B [10]. 

Subject   U (ms)     (ms)   S0 (ms)     L0 (ms)  (h) 

        1  270 (296) 31 (37)  207 (200) 207 (180) 1.2 (1.0) 

2  410 (385) 33 (30)  200 (200) 200 (180) 3.0 (2.4) 

3  289 (281) 34 (32)  200 (200) 180 (180) 2.4 (4.5) 

4  302 (283) 50 (48)  200 (200) 180 (180) 1.0 (1.5) 

5  248 (238) 17 (15)  200 (209) 190 (181) 1.0 (4.1) 

6  333 (289) 31 (44)  200 (200) 200 (180) 2.8 (5.7) 

7  253 (254) 15 (18)  200 (200) 180 (180) 2.8 (2.1) 

8  250 (236) 15 (15)  236 (214) 180 (214) 1.0 (1.0) 

9  292 (271) 16 (30)  224 (200) 221 (200) 1.0 (1.5) 

10  228 (230) 15 (15)  200 (204) 180 (180) 1.0 (1.0) 

11  245 (237) 18 (20)  200 (200) 180 (180) 1.0 (1.5) 

12  369 (395) 37 (50)  260 (222) 225 (188) 1.6 (1.0) 

13  311 (366) 44 (50)  200 (200) 200 (180) 1.4 (1.0) 

14  259 (253) 15 (15)  200 (200) 180 (184) 1.0 (1.0) 

15  348 (385) 49 (50)  200 (200) 180 (188) 1.0 (1.0) 

             Mean  294 (293) 28 (31)  208 (203) 192 (185) 1.5 (2.0) 

SD  52 (60) 13 (14)  18 (7) 16 (10) 0.8 (1.5) 

             L0, lower homeostatic asymptote at time zero; S0, homeostatic state at time zero; SD, standard  

deviation; U, upper asymptote of the homeostatic process; , circadian phase; , circadian amplitude  

3.2.2 Individual-specific vs. Group-average Model Predictions 

Figure 4 shows the RMSEs of the individual-specific fits (Pi), cross-condition predictions based on individual-

specific models (PXi), and cross-condition predictions based on group-average models (
XiP ) for both the TSD 

and CSR conditions. As expected, for all subjects, RMSEs of Pi were smaller than those of PXi. However, the 

differences between them were not statistically significant (for both conditions, mean difference over the 15 

subjects = 4 ms, SD = 4 ms), implying that the individual-specific cross-condition model predictions were 
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almost as good as the fits. In fact, on average, PXi yielded only 9% and 14% higher RMSEs than Pi under TSD 

and CSR conditions, respectively. In contrast, RMSEs of both Pi and PXi were significantly lower than those of 

XiP  (P <0.05 by a Wilcoxon paired, two-sided, signed-rank test [14]), with PXi yielding, on average, 35% and 

29% lower RMSEs than 
XiP  under TSD and CSR conditions, respectively.  

3.3 Discussion: Modeling Individual Differences During Sleep Loss  

A key finding of this work is that the UMP captures an individual’s unique trait-like response to sleep loss. In 

other words, a model developed for an individual on one sleep-loss condition can be used to predict performance 

of the same individual under another sleep-loss condition. The individual-specific cross-condition model 

predictions (PXi) yielded only marginally higher RMSEs (up to 14%) than the corresponding fits (Pi). However, 

they yielded up to 35% lower RMSEs than the corresponding cross-condition group-average model predictions 

(
XiP ), thereby advocating the use of individual-specific models over group-average models for predicting 

individuals’ performance under either of the two sleep-loss conditions. An expanded treatment of these findings 

was reported in Ref. 15. [15] 
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Figure 3: Individual-specific fits (Pi) and cross-condition predictions (PXi) of PVT performance (mean 
response time statistic) using the UMP for three different subjects challenged to TSD and CSR 

conditions in Study B [10]. For each sleep-loss condition, the solid blue lines represent the fits and 
the dashed red lines represent the cross-condition predictions based on models obtained by fitting 

on data from the other condition. Shaded regions represent the sleep episodes.   

Recovery 64-h TSD Recovery CSR (7 nights of 3-h TIB) 

         Data 

         Fit (Pi) 

         Prediction (PXi) 

Subject #3 

Subject #5 

Subject #12 
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In this work, we applied the UMP model on PVT performance data for individuals who underwent total and 

partial sleep loss under laboratory conditions. However, the model may also be applicable to individuals in 

operational environments using available computational platforms. This would require information about the 

individual’s sleep-wake history and performance data, which together would serve as inputs to the UMP model 

running on a computational platform [tablet, personal computer (PC), or a smartphone] to customize the model 

and make predictions. For example, an individual’s sleep-wake history could be continuously inferred via wrist-

worn actigraphy and streamed to a computer. Similarly, brief, periodic PVT performance tests [16] could be 

performed on a computer running the UMP model [17]. 

4.0 DOSE-DEPENDENT MODEL OF CAFFEINE EFFECTS ON PERFORMANCE 

DURING SLEEP LOSS  

Caffeine is the most widely consumed stimulant to counter sleep-loss effects. While the pharmacokinetics of 

caffeine in the body are well understood, its alertness-restoring effects are still not well characterized. In fact, 

mathematical models capable of predicting the effects of varying doses of caffeine on objective measures of 

cognitive performance are not available. 
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Figure 4: Root mean-squared errors (RMSEs) of model fits (Pi), cross-condition individual-specific model 

predictions (PXi), and cross-condition group-average model predictions (
XiP ) of PVT performance (based on 

mean response time statistic) during TSD and CSR for each of the 15 subjects in Study B [10].  

Individual-specific Fit Pi  

Individual-specific Prediction PXi  

Group-average Prediction  XiP  
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Here, we developed and validated a biomathematical model that extends the model for sleep loss by accounting 

for the performance-restoring effects of varying doses of caffeine. Specifically, we used PVT lapse data from 

one study (involving repeated administration of caffeine doses of 0, 50, 100, and 200 mg) to develop the model 

and validated the model’s predictions on lapse data from another study (involving repeated administration of 

caffeine doses of 0, 100, 200, and 300 mg) at both group-average and individual levels.  

4.1 Methods: Modeling Dose-dependent Effects of Caffeine  

4.1.1 Model of Dose-dependent Effects of Caffeine 

We hypothesized that caffeine has a multiplicative effect on performance during sleep loss. In other words, the 

performance impairment estimate [Pc(t)] at time instant t of a sleep-deprived individual after caffeine intake can 

be formulated as follows: 

)()()( tgtPtP PDc  ,         (6) 

where P(t) represents the individual’s performance in the absence of caffeine (referred to as caffeine-free 

performance henceforth) at time awake t and gPD(t) represents the caffeine effect factor, with 0 ≤ gPD(t) ≤ 1, 

where 1 corresponds to pharmacodynamic (PD) effects in the absence of caffeine, i.e., the most impaired 

performance, and 0 corresponds to the maximal PD effect on cognitive performance, i.e., complete restoration 

with no impairment [18]. Hence, with this multiplicative model, performance impairment levels decrease after 

caffeine intake and, eventually, as caffeine is cleared, return to the levels that would be observed if caffeine had 

not been administered. Here, we used the two-process model [Eq. (1)] to characterize the caffeine-free 

performance P(t). 

To model the caffeine effect factor (gPD), we used the one-compartment pharmacokinetic (PK) model of caffeine 

[19, 20] within the Hill equation [21] that relates PK and PD, and expressed gPD of caffeine dose D administered 

at time t0 as follows:  

     1

0)(exp1,


 ttkMDtg DDPD
  for t ≥ t0 ,              (7) 

where MD and kD represent the amplitude factor and elimination rate parameters of the caffeine model, 

respectively, which depend on caffeine dose D. To account for the dose-dependent effects of caffeine, we used a 

linear and exponential model to capture the effects of dose on MD and kD, respectively, in accordance with prior 

results from studies on PK and PD of caffeine under TSD [22-24]. Accordingly, we expressed MD and kD as 

follows: 

DMMD  0
  and   zDkkD  exp0

,     (8) 

where M0 denotes the amplitude slope, k0 denotes the basal elimination rate, and z denotes the decay constant. In 

what follows, we refer to M0, k0, and z as the dose-dependent caffeine model parameters. 

To extend the gPD model for repeated caffeine doses, we modified Eqs. (7-8) so that at the beginning of each 

dose the amplitude factor MD and elimination rate kD accounted for the extant plasma caffeine concentration, 

which was computed using the standard one-compartment PK model [25, 26]. Accordingly, the PD effect after j 

doses of caffeine of strengths D1, D2, …, Dj administered at times t1, t2, …, tj, respectively, can be expressed as 

follows: 
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 
  








1
)(exp1

1
,

jDjDj

jPD
ttkM

Dtg         (9) 

where MDj and kDj denote the effective amplitude factor and elimination rate parameters, respectively, that now 

depend on the caffeine concentration at time tj [26]. This repeated-dose gPD model in Eq. (9) reduces to Eq. (7) 

under single-dose conditions.  

The gPD model in Eq. (9) does not consider the absorption of caffeine. This is a reasonable approximation for 

caffeine when ingested via coffee, tea, energy drinks, and most gum products, where the absorption rate is much 

faster (by a factor of >15) than the elimination rate. 

4.1.2 Study Data 

We obtained PVT lapse data from two previously published TSD studies to develop and validate the dose-

dependent caffeine model.  

The first study (labeled Study C) involved 48 healthy young adults who were kept awake for 29 consecutive 

hours in a controlled laboratory environment [27]. The 48 subjects were randomly assigned to one of four dose 

groups (placebo, 50, 100, or 200 mg, n = 12 subjects/group) and were administered the corresponding dose of 

Stay Alert® (Amurol Confectioners, Yorkville, IL) caffeinated chewing gum at the beginning of each of three 2-

h test blocks after 20, 22, and 24 h of sleep loss (corresponding to 0300, 0500, and 0700 hours, respectively, on 

day 2). All subjects completed 10-min PVTs starting at 0800 hours on day 1 and ending at 1200 hours on day 2, 

for a total of 29 PVT sessions, including nine sessions before caffeine administration, six sessions during each of 

the three subsequent 2-h test blocks, and two additional tests after the third 2-h test block.  

The data from the second study (labeled Study D) were collected as part of a randomized Latin square crossover 

experiment across four laboratory sessions, each separated by at least 1 mo (washout period), in which 16 

healthy young adults were kept awake for 27 consecutive hours [28]. During each of the four laboratory 

sessions, subjects were administered placebo, 100, 200, or 300 mg of Stay Alert® caffeinated chewing gum 

three times (the same dose of caffeine was administered in each of the three times) after 20, 22, and 24 h of sleep 

loss (corresponding to 0300, 0500, and 0700 hours, respectively, on day 2). Subjects completed 10-min PVTs 

starting at 0800 hours on day 1 and ending at 1000 hours on day 2, for a total of 27 PVT sessions, including nine 

sessions before caffeine administration and six sessions after each of the three caffeine gum administrations. 

For Study C, two subjects (one subject from the placebo group and one subject from the 100-mg group) were 

excluded from analyses due to missing data, resulting in a sample size of 11 subjects for the placebo and 100-mg 

groups. Three subjects from Study D (crossover design) were excluded due to missing data, resulting in a sample 

size of 13 subjects in this study.  

Because baseline measures of performance (i.e., the first ~20 h involving the 9 sessions before caffeine 

administration) varied across Studies C and D, to allow for proper cross-study predictions, we normalized the 

performance data to eliminate baseline differences between the two studies. To this end, we applied an affine 

transformation [26, 29] to Study D data. 

4.1.3 Group-average and Individual-specific Models 

We used the group-average PVT lapse data from Study C to develop the group-average dose-dependent caffeine 

model. Specifically, we first obtained a group-average caffeine-free model P  by fitting Eq. (1) to data from the 

for t < t1 

for t ≥ tj,  j = 1, 2, …,
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0-mg group of subjects. We then obtained the group-average caffeine model parameters (M0, k0, and z), needed 

to estimate the dose-dependent group-average 
PDg , by minimizing the combined sum of the squared errors 

between the caffeine model and the data from the different caffeine dose groups in the study. We then used this 

model to predict the group-average lapse data from Study D. 

We used each individual’s PVT lapse from Study D to develop individual-specific prediction models of caffeine 

effects. Specifically, for each subject i, we first obtained the caffeine-free component of the model P
i
 by fitting 

Eq. (1) to the i-th subject’s performance data obtained under placebo (0 mg) administration. We then computed a 

group-average  j

i

PD Dtg ,  using the same approach as described above. However, in computing the group-

average i

PDg , we excluded performance data from the i-th subject. Accordingly, to  predict performance of the i-

th subject at time t after the j-th caffeine dose Dj, we used the following equation:   

     
j

i

PD

i

j

i

c DtgtPDtP ,,  .       (10) 

4.1.4 Goodness of Fits 

To assess the goodness of fits, we calculated the RMSEs between the group-average caffeine model fits and 

predictions (and the individual-specific model predictions) and the performance data. 

4.2 Results: Modeling Dose-dependent Effects of Caffeine  

We used group-average lapse data from Study C to obtain the dose-dependent caffeine model parameters (M0, k0, 

and z) and then assessed the corresponding group-average model fits and cross-study predictions of Study D 

lapse data. Finally, we used Study D lapse data to construct individual-specific caffeine-free models 

,iP individual-specific caffeine models ,i

cP and group-average caffeine models ( i

cP  [ i

PDgP  ]). 

4.2.1 Group-average Model Fits and Predictions 

We obtained the following dose-dependent caffeine model parameter estimates (95% CIs) by fitting Eq. (6) on 

Study C data: M0 = 9.86 (6.96-13.98) lapses, k0 = 0.49 (0.28-0.88) h
-1

, and z = 1.63 (0.59-4.46) g
-1

.  

Figure 5, top, shows group-average PVT lapse data for Study C in the three caffeine dose groups (50, 100, and 

200 mg; one in each panel) and the group-average model fits on these data. It also shows the group-average 

caffeine-free model ,P which was obtained by fitting P(t) in Eq. (1) to the placebo data averaged across all 

subjects in the study. The caffeine model accurately captured the dose-dependent effects of the three repeated 

doses of caffeine on performance and showed considerably improved fits to the data compared with the 

caffeine-free model. Figure 5, bottom, shows group-average lapse data for Study D in the 100-, 200-, and 300-

mg caffeine dose groups (one in each panel) and model predictions based on a group-average model 

developed on the entire Study C data. The caffeine model accurately predicted the effects of the three repeated 

doses of 100, 200, and 300 mg of caffeine and was substantially better than the caffeine-free model 

predictions. 
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Figure 5: Dose-dependent caffeine model fits (top) and cross-study predictions (bottom) on group-
average PVT lapse data (standard errors) measured after three repeated caffeine dose 

administrations (at 20, 22, and 24 h of sleep loss; denoted by thin dotted vertical lines) in  
Studies C (top) and D (bottom). The green dashed-dotted lines represent the  

corresponding caffeine-free model fits and predictions.  

We assessed the group-average caffeine model fits (and predictions) by calculating the RMSEs between the fits 

(and predictions) and the group-average lapse data for each of the three caffeine dose groups in each study. Table 

2 lists RMSEs of the group-average model fits on Study C and predictions on Study D. It also lists the associated 

RMSEs of the caffeine-free model within parentheses. For each dosing condition, the RMSEs of the caffeine 

model were at least 2.3 times smaller than their caffeine-free counterparts. In particular, the caffeine model 

showed 57-90% improvements over the caffeine-free model fits and 75-82% improvements over the caffeine-

free model predictions. 

Study C 

Study D 
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Table 2: Root mean squared errors (RMSEs) of the caffeine model fits (for Study C) and predictions 
(for Study D) on group-average PVT lapse data. Entries within parentheses reflect the RMSEs of the 

corresponding caffeine-free models fits and predictions. RMSE units are number of PVT lapses.  

Dose (mg) Fit on Study C Prediction on Study D 

50 3.12 (11.46) – 

100 5.94 (13.83) 3.08 (16.86) 

200 2.44 (24.01) 3.90 (21.58) 

300  –  5.70 (22.51) 

4.2.2 Individual-specific Model Predictions 

Using the caffeine model in Eq. (10), we also developed individual-specific caffeine models i

cP  to predict post-

caffeine performance of each subject i in Study D (crossover design study). We compared these predictions with 

the corresponding individual-specific, caffeine-free model estimates P
i
 [in Eq. (10) used to compute i

cP ] and the 

group-average caffeine model predictions i

cP  [ i

PDgP   in Eq. (10) based on Study D data while excluding 

data from the i-th subject]. Figure 6 shows the i

cP  predictions after three repeated caffeine doses (the same 

dose of caffeine administered each of the three times) of 100, 200, and 300 mg for one of the 13 subjects 

(Subject #1) in Study D. Also shown are the individual-specific, caffeine-free model predictions P
i
 and group-

average model predictions .i

cP  Both i

cP and i

cP predicted the effects of 200 and 300 mg of caffeine considerably 

better than P
i
. For the 100-mg caffeine doses, performance improved immediately after caffeine intake but 

dissipated quickly after ~30 min. 
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Figure 6: Individual-specific ( i

cP ) and group-average ( i

cP ) caffeine model predictions of one of the 

subject’s (Subject #1) PVT lapse data after three repeated caffeine doses of 100 mg (left), 200 mg 
(middle), and 300 mg (right) administered at 20, 22, and 24 h of sleep loss (denoted by thin dotted 

vertical lines) in Study D [28]. The green dashed-dotted lines represent the individual-specific 

caffeine-free model fit ( i
P ) on PVT lapse data obtained under placebo administration. 

Table 3 shows a comparison of RMSEs of the individual-specific caffeine model predictions i

cP with those of 

the corresponding caffeine-free model estimates P
i
 to assess the benefit of accounting for the effects of caffeine 

i

cP  
P

i
 

i

cP  

Data 
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doses of 100, 200, or 300 mg on performance in Study D subjects. The table also lists the median percent 

differences between the RMSEs of i

cP and iP across the 13 subjects for each dose. i

cP performed better than 

iP in at least 7 of 13 subjects in each dosing condition, with median improvements ranging from 31% for low 

(100 mg) caffeine doses to 43% for high (300 mg) doses. 

4.3 Discussion: Modeling Dose-dependent Effects of Caffeine  

The mathematical model described here captures the dose-dependent effects of caffeine on PVT lapses during 

total sleep loss. It builds on our previously developed fixed-dose model [18], which estimates the effect of 

caffeine by multiplying the phenomenological two-process model of sleep regulation (used to characterize 

performance in the absence of caffeine) with a caffeine-effect factor (gPD) that ranges from 0 (maximal caffeine 

effect) to 1 (no caffeine effect). The gPD factor is based on the PK-PD sigmoidal relationship of caffeine derived 

via the Hill equation. Here, we incorporated dose-dependent effects into gPD by modeling two of its parameters, 

which control the strength and duration of caffeine effects, as a function of dose. Specifically, we modeled gPD 

such that the strength of caffeine effect increases with larger doses, but only up to a point (best PVT 

performance), beyond which the magnitude of the effect saturates. However, the duration of effect keeps 

increasing with dose, reflecting the saturable metabolic processes involved in the clearance of caffeine [22, 30]. 

Table 3: RMSEs of the individual-specific caffeine model predictions ( i

cP ) and individual-specific 

caffeine-free model estimates ( i
P ) of PVT lapse data for Study D subjects after three repeated 

caffeine doses of 100, 200, and 300 mg administered at 20, 22, and 24 h of sleep loss. Also shown for 

each dose are the median percent differences [= 100 x ( i
P – i

cP )/ i
P ] between the RMSEs across all 

13 subjects. RMSEs of caffeine models that performed better than their corresponding caffeine-free 
models are in boldface. RMSE units are number of PVT lapses. 

 
   100 mg    200 mg   300 mg 

Subject i

cP  
iP   i

cP  
iP   i

cP  
iP  

1  10.85 6.31  6.72 23.42  7.69 23.35 

2  5.30 7.65  6.40 9.94  8.41 8.45 

3  11.68 8.31  11.28 20.83  16.13 14.69 

4  19.61 12.38  9.63 9.80  9.09 15.89 

5  16.96 25.40  14.24 29.46  10.56 29.82 

6  9.18 14.62  13.57 13.00  21.94 8.29 

7  19.63 6.99  20.19 6.22  11.81 20.24 

8  10.50 15.19  15.30 9.36  7.28 10.34 

9  14.84 21.94  9.39 21.21  8.28 15.46 

10  11.14 19.05  11.91 23.84  6.41 15.51 

11  11.65 17.65  9.34 19.85  6.99 20.26 

12  10.83 4.02  9.34 9.29  16.12 4.60 

13  7.62 7.48  9.79 10.41  5.46 16.26 

Median % 

Difference 
      31 

 
    36 

 
    43 
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A group-average, dose-dependent caffeine model was developed on data from one study and then validated on 

data from another study. The caffeine model captured (and predicted) the dose-dependent effects of caffeine on 

performance in both studies. Importantly, the model fits and cross-study predictions were substantially 

better (up to 90% and 82%, respectively) than the caffeine-free models (Table 2), with greater improvements 

typically observed in larger doses. 

Individual-specific caffeine models were also developed, where the caffeine-free component was individualized 

and the caffeine-effect multiplier gPD was based on the group-average model. The individual-specific caffeine 

models yielded an average reduction in prediction error of 37% compared with their caffeine-free counterparts 

across all doses, with improvements being greater for larger doses.  

An expanded treatment of these findings was previously reported in Ref. 26. 

5.0 CONCLUSIONS 

In summary, in this work, we have developed key capabilities to accurately predict the effects of sleep loss and 

the restorative effects of different dosages of caffeine on performance at both group-average and individual 

levels. To enhance the utility of the models, we seek to incorporate additional capabilities. In particular, we are 

developing strategies to integrate the UMP with the dose-dependent model of the caffeine response so as to 

predict the detrimental effects of both total and partial sleep loss and the recuperative effects of caffeine using a 

single model. This supports our long-term goal of incorporating these model components into an integrated 

computational tool that prescribes countermeasures (e.g., the timing of naps and timing and dosage of caffeine) 

to optimize an individual’s neurobehavioral performance and thereby reduce the risk of sleep-loss-related errors 

and accidents. 

While many challenges remain, the integrated UMP would provide another step toward the development of a 

wearable computer-based system or smartphone app that considers an individual’s sleep/wake history, current 

and recent-past performance, and caffeine consumption to predict future levels of performance.      
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